NCERT Solutions Class 8 Maths Chapter 2: New Syllabus

 NCERT solutions for Class 8 Maths Chapter 2 Linear Equations in One Variable is available in this page . Study Circle Mam created the NCERT Solutions for the chapter Linear Equations in One Variable. To assist students in completing each exercise question in the book and getting ready for the exam, Linear Equations in One Variable’s answered questions are all in accordance with the most recent NCERT syllabus and instructions.

The answers act as a resource for the students as they complete their assignments and homework. The NCERT Solutions for Class 8 Maths Chapter 2 are a very helpful study resource for Class 8 students as they feature the exercise-by-exercise solutions for all of the chapters. The students can ace the subject and their final exams by practising these solutions. These solutions were developed using the most recent NCERT syllabus, encompassing all the important subject material.

NCERT Solutions Class 8 Maths Chapter 2

Exercise 2.1

Solve the following equations and check your results.

1. 3x = 2x + 18

Solution:

3x = 2x + 18

⇒ 3x – 2x = 18

⇒ x = 18

Putting the value of x in RHS and LHS, we get, 3 × 18 = (2 × 18) +18

⇒ 54 = 54

⇒ LHS = RHS

2. 5t – 3 = 3t – 5

Solution:

5t – 3 = 3t – 5

⇒ 5t – 3t = -5 + 3

⇒ 2t = -2

⇒ t = -1

Putting the value of t in RHS and LHS, we get, 5× (-1) – 3 = 3× (-1) – 5

⇒ -5 – 3 = -3 – 5

⇒ -8 = -8

⇒ LHS = RHS

3. 5x + 9 = 5 + 3x

Solution:

5x + 9 = 5 + 3x

⇒ 5x – 3x = 5 – 9

⇒ 2x = -4

⇒ x = -2

Putting the value of x in RHS and LHS, we get, 5× (-2) + 9 = 5 + 3× (-2)

⇒ -10 + 9 = 5 + (-6)

⇒ -1 = -1

⇒ LHS = RHS

4. 4z + 3 = 6 + 2z

Solution:

4z + 3 = 6 + 2z

⇒ 4z – 2z = 6 – 3

⇒ 2z = 3

⇒ z = 3/2

Putting the value of z in RHS and LHS, we get,

(4 × 3/2) + 3 = 6 + (2 × 3/2)

⇒ 6 + 3 = 6 + 3

⇒ 9 = 9

⇒ LHS = RHS

5. 2x – 1 = 14 – x

Solution:

2x – 1 = 14 – x

⇒ 2x + x = 14 + 1

⇒ 3x = 15

⇒ x = 5

Putting the value of x in RHS and LHS, we get, (2×5) – 1 = 14 – 5

⇒ 10 – 1 = 9

⇒ 9 = 9

⇒ LHS = RHS

6. 8x + 4 = 3 (x – 1) + 7

Solution:

8x + 4 = 3 (x – 1) + 7

⇒ 8x + 4 = 3x – 3 + 7

⇒ 8x + 4 = 3x + 4

⇒ 8x – 3x = 4 – 4

⇒ 5x = 0

⇒ x = 0

Putting the value of x in RHS and LHS, we get, (8×0) + 4 = 3 (0 – 1) + 7

⇒ 0 + 4 = 0 – 3 + 7

⇒ 4 = 4

⇒ LHS = RHS

7. x = 4/5 (x + 10)

Solution:

x = 4/5 (x + 10)

⇒ x = 4x/5 + 40/5

⇒ x – (4x/5) = 8

⇒ (5x – 4x)/5 = 8

⇒ x = 8 × 5

⇒ x = 40

Putting the value of x in RHS and LHS, we get,

40 = 4/5 (40 + 10)

⇒ 40 = 4/5 × 50

⇒ 40 = 200/5

⇒ 40 = 40

⇒ LHS = RHS

8. 2x/3 + 1 = 7x/15 + 3

Solution:

2x/3 + 1 = 7x/15 + 3

⇒ 2x/3 – 7x/15 = 3 – 1

⇒ (10x – 7x)/15 = 2

⇒ 3x = 2 × 15

⇒ 3x = 30

⇒ x = 30/3

⇒ x = 10

Putting the value of x in RHS and LHS, we get,

9. 2y + 5/3 = 26/3 – y

Solution:

2y + 5/3 = 26/3 – y

⇒ 2y + y = 26/3 – 5/3

⇒ 3y = (26 – 5)/3

⇒ 3y = 21/3

⇒ 3y = 7

⇒ y = 7/3

Putting the value of y in RHS and LHS, we get,

⇒ (2 × 7/3) + 5/3 = 26/3 – 7/3

⇒ 14/3 + 5/3 = 26/3 – 7/3

⇒ (14 + 5)/3 = (26 – 7)/3

⇒ 19/3 = 19/3

⇒ LHS = RHS

10. 3m = 5m – 8/5

Solution:

3m = 5m – 8/5

⇒ 5m – 3m = 8/5

⇒ 2m = 8/5

⇒ 2m × 5 = 8

⇒ 10m = 8

⇒ m = 8/10

⇒ m = 4/5

Putting the value of m in RHS and LHS, we get,

⇒ 3 × (4/5) = (5 × 4/5) – 8/5

⇒ 12/5 = 4 – (8/5)

⇒ 12/5 = (20 – 8)/5

⇒ 12/5 = 12/5

⇒ LHS = RHS

NCERT Solutions Class 8 Maths Chapter 2

    Exercise 2.2

Solve the following linear equations.

1. x/2 – 1/5 = x/3 + ¼

Solution:

x/2 – 1/5 = x/3 + ¼

⇒ x/2 – x/3 = ¼+ 1/5

⇒ (3x – 2x)/6 = (5 + 4)/20

⇒ 3x – 2x = 9/20 × 6

⇒ x = 54/20

⇒ x = 27/10

2. n/2 – 3n/4 + 5n/6 = 21

Solution:

n/2 – 3n/4 + 5n/6 = 21

⇒ (6n – 9n + 10n)/12 = 21

⇒ 7n/12 = 21

⇒ 7n = 21 × 12

⇒ n = 252/7

⇒ n = 36

3. x + 7 – 8x/3 = 17/6 – 5x/2

Solution:

x + 7 – 8x/3 = 17/6 – 5x/2

⇒ x – 8x/3 + 5x/2 = 17/6 – 7

⇒ (6x – 16x + 15x)/6 = (17 – 42)/6

⇒ 5x/6 = – 25/6

⇒ 5x = – 25

⇒ x = – 5

4. (x – 5)/3 = (x – 3)/5

Solution:

(x – 5)/3 = (x – 3)/5

⇒ 5(x-5) = 3(x-3)

⇒ 5x-25 = 3x-9

⇒ 5x – 3x = -9+25

⇒ 2x = 16

⇒ x = 8

5. (3t – 2)/4 – (2t + 3)/3 = 2/3 – t

Solution:

(3t – 2)/4 – (2t + 3)/3 = 2/3 – t

⇒ ((3t – 2)/4) × 12 – ((2t + 3)/3) × 12

⇒ (3t – 2) × 3 – (2t + 3) × 4 = 2 × 4 – 12t

⇒ 9t – 6 – 8t – 12 = 8 – 12t

⇒ 9t – 6 – 8t – 12 = 8 – 12t

⇒ t – 18 = 8 – 12t

⇒ t + 12t = 8 + 18

⇒ 13t = 26

⇒ t = 2

6. m – (m – 1)/2 = 1 – (m – 2)/3

Solution:

m – (m – 1)/2 = 1 – (m – 2)/3

⇒ m – m/2 – 1/2 = 1 – (m/3 – 2/3)

⇒ m – m/2 + ½ = 1 – m/3 + 2/3

⇒ m – m/2 + m/3 = 1 + 2/3 – ½

⇒ m/2 + m/3 = ½ + 2/3

⇒ (3m + 2m)/6 = (3 + 4)/6

⇒ 5m/6 = 7/6

⇒ m = 7/6 × 6/5

⇒ m = 7/5

Simplify and solve the following linear equations.

7. 3 (t – 3) = 5(2t + 1)

Solution:

3(t – 3) = 5(2t + 1)

⇒ 3t – 9 = 10t + 5

⇒ 3t – 10t = 5 + 9

⇒ -7t = 14

⇒ t = 14/-7

⇒ t = -2

8. 15(y – 4) –2(y – 9) + 5(y + 6) = 0

Solution:

15(y – 4) –2(y – 9) + 5(y + 6) = 0

⇒ 15y – 60 -2y + 18 + 5y + 30 = 0

⇒ 15y – 2y + 5y = 60 – 18 – 30

⇒ 18y = 12

⇒ y = 12/18

⇒ y = 2/3

9. 3 (5z – 7) – 2(9z – 11) = 4(8z – 13) – 17

Solution:

3(5z – 7) – 2(9z – 11) = 4(8z – 13) – 17

⇒ 15z – 21 – 18z + 22 = 32z – 52 – 17

⇒ 15z – 18z – 32z = -52 – 17 + 21 – 22

⇒ -35z = -70

⇒ z = -70/-35

⇒ z = 2

10. 0.25(4f – 3) = 0.05(10f – 9)

Solution:

0.25(4f – 3) = 0.05(10f – 9)

⇒ f – 0.75 = 0.5f – 0.45

⇒ f – 0.5f = -0.45 + 0.75

⇒ 0.5f = 0.30

⇒ f = 0.30/0.5

⇒ f = 3/5

⇒ f = 0.6

 

Sharing Is Caring:

Leave a comment